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In existing experiments it is known that the slow evolution of nonlinear deep-water 
waves exhibits certain asymmetric features. For example, an initially symmetric 
wave packet of sufficiently large wave slope will first lean forward and then split into 
new groups in an asymmetrical manner, and, in a long wavetrain, unstable sideband 
disturbances can grow unequally to cause an apparent downshift of carrier-wave 
frequency. These features lie beyond the realm of applicability of the celebrated cubic 
Schrodinger equation (CSE), but can be, and to some extent have been, predicted 
by weakly nonlinear theories that are not limited to slowly modulated waves (i.e. 
waves with a narrow spectral band). Alternatively, one may employ the fourth-order 
equations of Dysthe (1979), which are limited to narrow-banded waves but can 
nevertheless be solved more easily by a pseudospectral numerical method. Here we 
report the numerical simulation of three cases with a view to comparing with certain 
recent experiments and to complement the numerical results obtained by others from 
the more general equations. 

1. Introduction 
Since the discovery by Benjamin & Feir (1967) of the instability of weakly 

nonlinear Stokes waves by sideband disturbances, rapid advances have taken place 
in both theory and experiment on the behaviour of deep-water waves. In  particular, 
the nonlinear evolution subsequent to the initial instability has been studied by using 
either a pair of conservation equations (Chu & Mei 1970) or, equivalently but more 
conveniently, the cubic Schrodinger equation (CSE) (Zakharov & Shabat 1972 ; Lake 
et al. 1977; Yuen & Ferguson 1978). These equations govern the slow modulation of 
the wave envelope, with a third-order accuracy in the wave slope ka. Among the 
theoretical predictions on the nonlinear evolution, recurrence is the most prominent 
feature. 

Several existing experiments (Feir 1967; Lake et al. 1977; Melville 1982) were 
performed in relatively short tanks. In  order to accelerate the nonlinear development 
the wave slopes were typically rather high. Detailed comparisons show that the 
observations agree with the third-order slow-modulation theory only in the early 
stages. Specifically, Feir (1967) examined the evolution of wave packets whose 
envelopes were initially symmetrical and bell-shaped. For larger values of maximum 
ka the envelopes became forward-leaning after a short distance from the wavemaker 
(4 feet) ; further downstream (28 feet) two prominent groups emerged, with the smaller 
group trailing. On the other hand the CSE, which is symmetric with respect to the 
spatial coordinate in the coordinate system moving at the group velocity, only 
predicts symmetric envelopes if they are symmetrical initially (Chu & Mei 1971 ; Yuen 
& Ferguson 1978). More comprehensive experiments for wave packets of various 
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durations in a much longer wave tank (130 m) have now been reported by Su (1982) 
and by Chereskin (1982). For short pulses their results extend those of Feir and reveal 
further information on group splitting and frequency downshift in the leading group. 
In the instability experiments of a uniform wavetrain (Lake et al. 1977 ; Melville 1982), 
the typical value of ka is greater than 0.2. The sideband disturbances, if they were 
of equal magnitude initially, were found to grow at equal rate only for a limited time. 
As nonlinearity became more and more important, the lower sideband grew faster 
and attained a greater maximum than the upper sideband, while the carrier wave 
dropped to a minimum. Before reaching these extrema, local breaking was observed 
in Melville’s records and probably also occurred in those of Lake et al. This unequal 
growth has been suggested by Lake et al. as a possible contributor to the downward 
shift of the spectral peak of wind waves with increasing fetch. Again, the unequal 
growth of sidebands is not predicted by the CSE (Yuen & Ferguson 1978). From the 
experimental data, it can be inferred that significant departure from the numerical 
predictions by CSE occurs when the dimensionless time of evolution ( k a ) 2 0 t  has 
exceeded about 10, which is beyond the realm of applicability of the CSE. 

Aside from the CSE, which is limited to slowly modulated waves, i.e. waves with 
a narrow spectral band, numerical studies of nonlinear evolution have been carried 
out previously via mode-coupling equations by West, Watson & Thomson (1974), 
Cohen, Watson & West (1976) and Bryant (1982). In their approaches the field 
equations are approximated to third order in wave slope ka and decomposed into a 
large number of propagating Fourier modes. The modal amplitudes are governed by 
simultaneous, cubically coupled ordinary differential equations. These equations are 
solved numerically by keeping a finite number of modes. Their results already exhibit 
trends toward asymmetry in the nonlinear stage. Another approach under similarly 
generous assumptions is the Zakharov equation, which has been used to deduce 
analytically criteria on linear instability (Crawford et al. 1981). These criteria are 
strikingly close to the accurate numerical solution of Longuet-Higgins (1978) for 
arbitrary La. For nonlinear evolution the Zakharov equation must be discretized, 
leading also to  mode-coupling equations which resemble those of West et al. (1974). 
Using only 7 Fourier modes, Yuen & Lake (1982) have shown further interesting 
features, including restabilization at  very large ka .  

While these general equations are more versatile, they are comparatively expensive 
for accurate numerical computations. If one is primarily interested in narrow-banded 
waves, an alternative is to extend the CSE by adding higher-order terms in order to 
enlarge its range of validity. The first attempt in this direction was made by Roskes 
(1977), who found numerically that an initially symmetric soliton envelope split into 
two soliton-like envelopes asymmetrically, in qualitative agreement with the 
observations of Feir (1967). However, his envelope equation did not include all the 
fourth-order terms. Correct fourth-order terms were later derived by Dysthe (1979) 
as cited in (2.1)-(2.4) in 52 below. The resulting equations enlarge the time range of 
validity from (ka)2wt  = 0 ( 1 )  to ( k ~ ) ~ w t  = O(1).  He uses them to study analytically 
the initial instability of infinitesimal sideband disturbances, and finds that for the 
linear analysis all the higher-order terms except the last in (2.1) can be omitted. 
Janssen (1983) uses the simplified Dysthe equations to explain the unequal sideband 
growth in the nonlinear stage. As will be pointed out later, the most important 
contributions to the asymmetric development at  large time are unfortunately 
associated with the discarded terms. 

In this paper we shall apply a pseudospectral method which can solve efficiently 
Dysthe’s equations in their full form and examine three examples. In the first of these, 
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the initial wave spectrum consists of two lines of equal height; thus there are two 
first-order sidebands but no carrier wave. Detailed comparison with some recent 
experiments by Keller (1982) will be made. In the second example of wave-packet 
evolution, comparison with recent experiments by Su (1982) will also be made. 
Finally, for a uniform wavetrain subjected to periodic sideband disturbances, we 
present some results showing the effect of dissipation on the long-time evolution. 

In the coastal seas the change in water depth must be one of the factors affecting 
the long-distance propagation of waves. For sufficiently gradual depth variation 
Dysthe's approximation can be quite easily modified and solved numerically. Such 
computations are of value in interpreting sea-surface records by remote sensing, and 
will be reported in the future. 

2. The governing equations 
We first cite Dysthe's equations, which are valid for water so deep that 

kh = O(ka)-l % 1 . t  In physical variables, let A be the complex amplitude of the first 
harmonic of the Stokes waves, A* the complex conjugate of A ,  and q5 the potential 
of the induced mean current. With minor corrections, the equations governing the 
slow variation of A and q5 are (Dysthe 1979) 

aA w i3A w a2A i 1 wa3A wk aA* 
at 2k ax 8k2 ax2 2 16 k3 ax3 4 ax 
-+- -+i- - + - ~ k 2  I A 12 A _ _  - ---A2- 

The fist four terms in (2.1) comprise the cubic Schrodinger equation in the 
fixed frame of reference. The linear x-derivatives of A represent the effects of 
frequency dispersion. These equations were derived under the assumption that 
O(kA)  = O(aA/ax) = O(ka) < 1. Thus the additional terms due to Dysthe are O ( ~ U ) ~ .  
The velocity of the induced current is O(ka)3. We remark that Dysthe's equations 
can be derived from Zakharov's integral equation (Stiassnie 1984) by adding the 
narrow-band assumption. 

It is advantageous to change to a coordinate system moving a t  the linear group 
velocity. We introduce following dimensionless variables : 

A = a,A', + = waiq5', 

E2kx = 7, q k h  = h', 

where E = lca, and y is a scale factor which renders the computational domain in 6 
to 27r. To a fixed observer 6 is the negative of time elapsed and 7 is the distance over 

t Dysthe aasumes kh > O(ku)-l. Since (2.2) implies that the horizontal and vertical lengthsceles 
for y5 are both O ( k ) - l ,  we can allow kh = O(ka)-l and (2.4). 
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which the group has advanced, i.e. the fetch. I n  this coordinate system the linear term 
A,, in (2.1) generates an additional fourth-order term €Aev, which is eliminated by 
making use of the leading-order part (the CSE) for A,. With the primes omitted for 
brevity, the normalized equations become 

We remark that the usual coordinate transformation is to  use 5 and 7 = c2wyt. While 
the difference is immaterial for the CSE, i t  simplifies the fourth-order terms in (2.6). 
In particular, there is no longer a triple derivative, which can cause a minor numerical 
noise at a certain higher harmonic in the pseudo-spectral method to be described, 
since the terms A,,, and A,, in (2.1) cancel for that harmonic. 

We shall always perform our computations in a periodic domain of period 2 ~ .  Thus 
the boundary conditions are 

4 0 ,  q )  = 4 2 %  TI, 

$cot z , q )  = $(2T z , q ) .  

(2.10) 

(2.11) 

The initial value of A(t ,O) will be specified later for f~ [0,2x]. 
For direct comparison with experiments we shall need the free-surface displacement 

c ( f ,  q ) ,  which can be evaluated from A .  I n  the dimensionless variables of (2.5) with 
6 = a r ,  the surface displacement is (after omitting primes) 

where @ = - q / c 2 + f / o /  is the phase function of the carrier waves. To compare this 
displacement with measurements a t  stationary probes, we must return first to the 
fixed coordinate system defined in (2.5). Note that, as f varies from 0 to  2 ~ ,  the 
dimensional time t a t  a fixed dimensional distance xo = q/E2k from the wavemaker 
varies from 2kxo/w to 2kxo/w-2x/ycw. Since the spectrum of the measured free- 
surface displacement can be approximately separated for each harmonic, for ready 
comparison with experiments we shall present the total first harmonic A’ accurate to  
third order, 

aA 3c2 
A ’ =  A - i q - - - ~ A ~ z A ,  

8 
(2.13) 

instead of A except when the difference between them is qualitatively noteworthy. 
The frequency deviation Aw from w is then proportional to the time derivative of the 
phase of A’. In  terms of the dimensionless variables of (2.5), 

Aw ae 
w - VZ; ’  _ -  

where 0 is the phase of A‘.  

(2.14) 



Numerical study of water-wave modulation 399 

We remark that the cubic Schrodinger equation for A is even in 6 ;  hence if A(& 0) 
is symmetric in 6 so is A(6,q)  for all q .  But A‘ or 5 contain odd derivatives of A and 
hence can be asymmetric. This type of asymmetry is, however, of higher order and 
cannot account for that observed in the experiments. Furthermore, it emphasizes the 
upper sideband more than the lower sideband. Now the 5th, 6th and 7th terms in 
(2.1) or the 4th term in (2.6) are odd derivatives in x; hence they contribute to the 
asymmetry in A directly. Since their effects become of first order after a time 
( k ~ ) ~ w t  = 0(1) this asymmetry is very important. On the other hand, the last 
(current) term in (2.1) or (2.6) is an even derivative because of (2.3) and does not cause 
asymmetry in A directly. In Janssen’s nonlinear theory only the last of the higher-order 
terms in (2.1) is kept; it cannot give a complete result, as will be discussed further 
in 96. 

3. The numerical scheme 
At any spatial step q,  we first use the known value of A(6,q)  for all 0 < 6 e 22c 

from earlier computations to solve for the current potential 4 by the pseudo-spectral 
method, as described in Fornberg & Whitham (1978). The spatial period is discretized 
by 2N points a t  which A([ ,  q )  is known. Transforming to the discretized Fourier space, 
we have 

2N-1 

A(v ,  q )  = F{A((,q)} = E A(nA6,q) einvnlN, 
n-0 

v = 0, +1, f 2  ,..., f N ,  A6 = n/N. (3.1) 
Thus the number of Fourier modes is 2N+ 1. The inverse transformation is 

1 v-N 

2N v--N 
A(nA6,q) = F-’{A(v,q)} = - Z p,A(v,q)  ecinvrrlN, (3.2) 

where pV = 1 for v =I= f N and t for v = f N. Fourier modes with v > or < 0 will be 
called the lower or upper sidebands. These transforms are readily evaluated by 
standard routines of fast Fourier transform (FFT). The derivatives of A with respect 
to 6 are given by 

-- - iSF-l{( - v ) ~  A(v ,  q ) }  = is F-l{( - v ) ~  F{A(E,q)}}. P A  
ats 

With the current potential similarly transformed, 

2N-1 

$(v, z ,  v )  = E +(n A(, 2,111 einvnlN, 
n-o 

1 v-N 

+(n A t ,  z , q )  = 2N vzN Pv $(v, 277) e-invrr’N, 

(2.7), (2.8) and (2.9) become 

-- a2$ 4v2$=0 ( h e  z <  O ) ,  
az2  

!!?! = 2F{Re(A*iF-1{-vF{A}})} ( z  = 0), aZ 

(3.3) 

( 3 . 4 ~ )  

(3.4b) 

( 3 . 5 ~ )  

(3.5b) 

(3.5c) 
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The solution can be readily written as 

cosh (2v(z+ h ) )  
$(v, z, q) = F {Re (A*iF-'{ - v F{A}})} 

v sinh (2vh) ' 
and for use in (2.6), 

31 = iF-l{ - v$},-, = F-l{ -iF{Im (A*F-'{ - vF{A}})} coth (2vh)). (3.7) 

Note that we have discarded in a$/i36 an integration constant (function of 7) that 
affects the phase of A only. In  all our computations we consider only infinitely deep 
water ; thus we have let 

36 2-0 

coth 2vh = f: 1 for v 3 0. (3.8) 

Having found +&[, z, v), (2.6) is solved for A ( € ,  7) by a split-step Fourier method 
(Tappert 1974). The linear and nonlinear terms are separately treated at each time 
step. For the nonlinear part we integrate the equation 

where (3.10) 

A midpoint finite-difference approximation is used for solving A .  The nonlinear terms 
are evaluated as 

&[A(6,r])l = (3.11) 

After calculating A(& q +$Aq) by a forward difference, 

A(6,r+:As) = 45q)-$A7&(46,7) ) ,  (3.12) 

we define a new A([ ,  7 + Aq) as the solution to (3.9) by 

&6,r+A7) = A(6,r)-Arl&[B(E,r]+~A7)1. (3.13) 

The linear part involves the equation 

(3.14) 

The exact solution of its Fourier transform is 

Numerically, A ( [ ,  7 +Aq) is obtained from J(6, 7 +AT)  by 

To prevent minor numerical noise, the exponential factor in (3.16) is changed to 
1 /( 1 - iy2e2A7) for the highest Fourier modes v = f (N - 1 ), & N. This does not modify 
the solution as a whole, as these highest modes do not contribute to the wave envelope 
A .  The solution A ( 6 , q )  is thus advanced in q,  and this information is then used to 
compute $ for the next step in 7. 

After A and q5 are found at  2N grid points, A' is calculated from (2.13). To obtain 
6 in (2.12) we first calculate the terms involving A between grid points by linear 
interpolation, and then multiply the harmonic factors involving the phase @. 



Numerical study of water-wave modulation 40 1 

Finally the numerical program was checked in three ways. 
(i) The conservation law 

I A l 2  d,$ = constant (3.17) s,““ 
was verified to within 0.15 yo. 

(ii) The same program was applied to the CSE by taking 6 = 0 in (2.6). A soliton 
envelope was found to remain constant in profile up to r ]  = 50 with an error of 

(iii) The initial growth rate of the computed unstable sideband was compared with 
Dysthe’s linearized theory. The agreement was good if ka, < 0.05. 

Some remarks on the numerical efficiency are worthwhile here. In  the pseudo- 
spectral method the nonlinear terms are evaluated at each and r ] ,  through FFT, 
before integration in r] is performed. The evaluation requires eight FFTs (cf. (3.11) 
and (3.13)). In  addition, two FFTs are needed in the linear equation (3.14). If 2N 
Fourier modes are used, a total O(20N In (2N)) operations are needed for advancing 
the solution by one step in r] .  On the other hand, the Fourier coefficients of the 
Zakharov integral equation are governed by a set of coupled first-order cubic ordinary 
differential equations whose coefficients are double sums of 2N modes. For an explicit 
time-differencing scheme, roughly O(2N)3 operations are needed per time step. Thus 
if the same kind of time-stepping is employed, it is much less expensive to solve 
Dysthe’s equations for the long-time evolution of slowly varying wavetrains. 

We now discuss the results of three numerical studies: periodic groups, short-wave 
packets and instability of a uniform wavetrain. Computational information such as 
grid size, etc., is given in the Appendix. 

4. Periodic group 
For infinitesimal waves the superposition of two progressive waves with slightly 

different frequencies gives rise to periodic groups whose envelopes move forward at 
the group velocity without change of form. Keller (1982) has recently reported 
experiments for such groups with maximum initial ka, up to 0.23. He found that each 
group tended to lean forward. In the spectral diagram the lower-frequency component 
wave (called the lower parent by Keller) remained relatively constant during the 
course of propagation, while the upper-frequency component (upper parent) declined. 
Sidebands also developed. Records at 10 stations within the first 7.14 m from the 
wavemaker are available. 

We used Keller’s initial data as inputs to our numerical scheme in the following 
way. From the two frequencies: oJ2n = 1.406 Hz and w2/2x  = 1.563 Hz we defined 
their average w/2n = 1.485 Hz a8 the carrier-wave frequency ; the corresponding k is 
8.865 m-l. The initial amplitude of the carrier wave was zero, while those of the 
parents were &zo = 0.013m, so that ka, = 0.23. We regarded the latter as two 
sidebands with v = k 1 .  From the frequency difference we let yka, = Aw/w,  so that 
there were two groups within the computational domain [0,2x]. The initial condition 
was 

(4.1) 

so that the two sidebands (v = & 1)  of A’@, 0) had equal initial amplitude of 0.5 as 
in the experiment. The initial values of the higher harmonic of the sidebands, i.e. 
v = 3, & 5, were small in the experiments and neglected in the input. Because the 
nonlinear terms in (2.6) are cubic, only odd harmonics arose at  later r ] .  As shown in 
figure 1,  the displacements 5 compare favourably with the experiments. Also the 

A(z ,  0) = 0.483 eit+0.537 e-’t, 
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FIGIJRE 1.  Measured and computed displacements at the last 8 stations for periodically modulated 
waves of Keller’s experiment. -, computed; 0 ,  crests or troughs measured by Keller. + 1 unit 
in the abscissa fJn corresponds to dimensional At = - l/ywku,. Here y = 0.229, ka, = 0.23, 
w/2n = 1.485 Hz and k = 8.865 m-’. The positions q, of the probes are (a)  3.14 m, ( b )  3.71 m, (c) 
4.28 m, ( d )  4.86 m, (e) 5.43 m, (f) 6.00 m, (9)  6.57 m, (h )  7.14 m. The corresponding dimensionless 
distance in the moving coordinates is 7 = k34x0. 

spectral development of the parents and their higher harmonics agrees with the 
observations (see figure 2). For contrast, results from the CSE are also plotted in 
figure 2 and are clearly unsatisfactory. 

In figure 3 the spectral evolution of the envelope A’ is shown for a duration much 
longer than that of the experiment. We further show the profiles of [ at selected 
fetches in figure 4. Note that, after the envelope within the original group period splits 
into two groups, the higher group advances faster. Therefore the higher group from 
the period behind catches up and coalesces with the lower group. Recall from 
figure 1 (h) that group splitting has just begun at 7 = 3.35 (zo = 7.14 m). At = 5 the 
splitting is complete (figure 4) ; the upper parent u = - 1 and the lower sideband v = 3 
are the greatest, while the lower parent v = 1 and the upper sideband v = -3 the 
smallest (figure 3). Now we can see the reason for the different group velocities most 
clearly. Let us interpret the larger group as the superposition of the most prominent 
two modes, i.e. the upper parent and lower sideband. Their average frequency is lower 
than the average of the upper and lower parents, i.e. w ;  hence the group velocity is 
greater. The smaller group may be interpreted as the superposition of the lower parent 
and the upper sideband. Their average frequency is higher than o; hence the group 
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FIGURE 2. Measured and computed spectral amplitudes for periodically modulated waves. Abscissa 
is the dimensionless 7 in the moving coordinates. The probe position zo is related to 7 by 7 = k3a: xo 
with the same parameters as in figure 1. (a) -, computed by present theory. Experimental 
measurements: +, upper parent (v = -1); 0, lower parent (v = 1); X ,  upper sideband ( u  = -3); 
0, lower sideband (v = 3). (b) Using results by CSE. 
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15 

FIQURE 3. Computed long-time evolution of spectral amplitudes 
with the same normalizations as in figure 2. 

velocity is lower. A t  7 = 8 at the larger group from behind can no longer be 
distinguished from the smaller one, resulting in a single backward-leaning envelope. 
Continuing the overtaking, the peaks of the larger and the smaller groups coincide 
at 7 = 11 ; the resultant envelope is now almost symmetric as the original envelope. 
The upper and lower parents return to their dominance; this completes the first 
recurrence cycle. Thus the entire evolution process including frequency downshift is 
due to the unequal development of sidebands. 

Finally we point out that the maximum local ka reaches as high as 0.4 at 7 = 6, 
which suggests that local breaking is likely. Keller indeed observed some breaking 
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FIQURE 4. Sample computed displacements (continuation of figure 1) .  The dimensionless distance 

= kau:x is (a )  4, ( b )  5, ( c )  7, (d )  8, (e) 9, (f) 11, (8 )  12, ( h )  14, with the same normalizations as in 
figure 1.  

at the last probe corresponding to 7 = 3.35, where the maximum computed ka = 0.36. 
Therefore we expect their computed recurrence to be quantitatively reliable only for 
lower initial ka,. 

5. Short-wave packets 
Feir (1967) performed experiments for packets of bell-shaped envelope and of 

roughly equal duration but different maximum amplitudes. Records were taken a t  
two stations at  4 and 28 feet from the wavemaker. For low wave slope the envelopes 
remained symmetrical and flattened with distance. For relatively steep waves, 
however, the envelopes first steepened forward, then split into two groups with the 
smaller group trailing. Using 15 modes in the mode-coupling equations of West et al. 
(1974), Cohen et al. (1976) simulated numerically the experiments of Feir (1967). The 
computation was carried out only to a time when asymmetry and group splitting were 
beginning to show. More extensive experiments in a long tank for initially square 
envelopes with ka, = O.OW.28 have been reported by Su (1982).t Free-surface 
displacements are available at  eight stations from 6.1 m to 106.7 m from the wave- 

t Similar data were also reported by Chereskin (1982), whose experiments were performed in 
Su’s tank. 
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FIGURE 5. Computed free surface of short wave packet at sample probes of Su’s experiment. The 
probe positions 5, are (a) 18.3 m, ( b )  42.7 m, (c) 91.5 m, (d) 106.7 m. Initial ka, = 0.09, 
w / 2 x  = 0.96 Hz and oT = 1h. + 1  unit in the abscissa E/n corresponds to dimensional 
At = - l /ywka0;  y = 0.0868. 

maker. They confirmed Feir on the asymmetry of evolution and further revealed that 
the separated groups have different frequencies. 

In this section we report our simulation of three experimental cases studied by Su 
for further insight: ka, = 0.09 with 5 and 10 waves in the original envelope, and 
ka, = 0.15 with 10 waves. Longer packets with 20 and 60 waves were also tested by 
Su, but would require substantially greater computational effort and are not pursued 
here. The initial condition was taken to be 

A(( ,  0) = O.B[tanh (j-ja)- tanh (j-jb)], j = 1,2,  ..., 2N, 

where (jb-ja)Ax was the initial length of the packet. As defined, the ends were 
slightly smoothed to avoid numerical instability. For the computational domain of 
EE [ 0 , 2 x ]  the dimensional range of time t is 2xlyoka. We always chose y so that this 
time range was much longer than the total duration of the evolving packets. 

Figure 5 shows the computed free surface 5 for the shortest packet with ka, = 0.09 
and w / 2 x  = 0.96 Hz. The initial duration of the packet is oT = 1 h .  The results are 
very close to the measurements. This is a case where the initial packet is too small 
to emit a soliton according to the CSE. Note in particular the slightly asymmetric 
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FIGURE 6. Frequency deviation Aw/w at  x, = 42.7 m for the same parameters as in figure 5. 

ka, = 0.09 
k,a, = 0.15, 

oT = 1On wT = 2On wT = 2oX 

x, (m) Measured Computed Measured Computed Measured Computed 

6.1 
18.3 
24.4 
42.7 
61 .O 
76.3 
91.5 
106.7 

0.107 
0.120 
0.094 
0.073 
0.066 
0.053 
0.049 
0.047 

0.106 
0.093 
0.089 
0.072 
0.063 
0.059 
0.058 
0.052 

0.1 15 
0.127 
0.129 
0.166 
0.147 
0.135 
0.132 
0.131 

0.099 
0.101 
0.118 
0.138 
0.140 
0.142 
0.139 
0.138 

0.218 
0.232 
0.289 
0.232 
0.142 
0.125 
0.130 
0.138 

0.175 
0.228 
0.295 
0.249 
0.225 
0.267 
0.239 
0.253 

TABLE 1. Measured and computed maximum local ka, at the probes of Su’s experiments 

envelope between xo = 42.7 m and 2, = 91.5 m, which is also noticeable in Su’s 
records. The wave period is also longer in the low group in front of the main group. 
In particular the backwctrd-leaning of the main group is associated with the nonlinear 
modification of linear dispersion. Figure 6 shows a sample distribution of frequency 
deviation Ao from w at xo = 42.7 m. Note that there is a general tendency of 
frequency downshift (Ao < 0) in front of the main peak, and upshift Ao > 0 behind. 
Therefore the front of the main envelope is steepened. The local extrema in Ao 
correspond to the nodes of 6, where the phase is meaningless. Quantitatively we have 
compared the measurement and the theory for the maximum amplitude at the peak 
of the largest group, at all 8 stations, as listed in table 1. The agreement is fairly good, 
despite the fact that no dissipation is accounted for in our theory. Because of the 
small scale of Su’s plots, more detailed comparison is difficult and is not made here. 

Figure 7 gives the theoretical free surface for a packet having twice the duration 
(wT = 2oR) but identical values of ka, and carrier frequency as in the preceding case. 
The results showing the development of groups are again quantitatively close to Su’s 
measurements for all eight stations ; the maximum amplitudes are compared in table 1 
also. Note here that the frequency downshift is very evident in the leading group. 
The corresponding 3-dimensional view of the computed first harmonic envelope A’ 
is shown in figure 8. The very low leading group advances faster than C,, and than 
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FIGURE 7. As figure 5 except wT = 2oX. 
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FIGURE 8. Overall evolution of A’ in moving coordinates. Initial ka, = 0.09, 
w / 2 ~  = 0.96 Hz, wT = 20rr and y = 0.0868. 
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FIGURE 9. Frequency deviation Aw/o at 2, = 106.7 m for the same parameters as in figure 7. 
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FIQURE 10. As figure 5 except initial ka, = 0.15, w/2x = 1.12, oT = 2oR and y = 0.0521. 

all other groups. We also display in figure 9 the frequency deviation Aw at 
xo = 106.7 m. There is downshift in the leading group ahead of the main and highest 
group, no significant frequency change in the main group, but upshift in the groups 
behind. 

Figure 10 is for the steeper waves La, = 0.15, w/2x = 1.12 Hz and wT = 20x. 
Agreement with Su’s experiment is good up to xo = 42.7 m. Since in the measure- 



Numerical study of water-wave modulation 409 

0.5 I 

0.5 1 .o 1.5 
.!IT 

FIGURE 11. Frequency deviation Ao/w at zo = 91.5 m for the same parameters as in figure 10. 

FIGURE 12. Overall evolution of A‘ in moving coordinates. Initial 
kao = 0.15, ~1271 = 1.12, wT = 2071 and y = 0.0521. 

ments there is a sudden drop of amplitude from xo = 42.7 to 61.0 m, signifying the 
occurrence of breaking, the quantitative discrepancy after xo = 61 m is understand- 
able. In spite of this, frequency downshift can be seen now in the largest group just 
as in the observations. This is further displayed by the frequency deviation for 
xo = 91.5 m in figure 11. Figure 12 gives the overall evolution of A’. The leading and 
highest group advances faster than the longest group, which in turn travels faster 
than the group velocity of the original carrier waves; this is consistent with the 
frequency downshift in the leading group. Thus the groups must eventually separate 
totally from one another. This feature has not been convincingly established before. 

We recall from the exact solution of CSE by Zakharov & Shabat (1972) that an 
envelope pulse, whatever its initial shape, evolves into a finite number of envelope 
solitons plus minor oscillations that decay with time, if the total area of the initial 
pulse is sufficiently large. The decaying oscillations are the consequence of linear 
dispersion and can be inferred from the linear part of CSE. If A ( [ ,  0) is real the solitons 
are stationary in (6 ,  v)-coordinates. The interaction among these bound solitons is 
exhibited by the presence of envelope nodes which recur at definite periods. Hence 
there is no total separation of groups, in contrast with the present computations on 
the basis of a more accurate theory and with Su’s experiments. 

Since dissipation affects the results only in a quantitative way we may now 
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conclude that a short wave packet can evolve into groups which ultimately separate, 
because of the frequency downshift in the leading group. The separated groups 
resemble, but are not exactly, the usual solitons. We have studied numerically wave 
envelopes which are initially single stable solitons according to the CSE. These 
envelopes now propagate faster if the maximum amplitudes are higher, while the 
peaks undergo minor undulations. Analytical soliton solutions for Dysthe’s equation 
have not been found. 

In addition to the larger cost of computation for those very long packets 
experimented by Su, our reason for not carrying out the numerical theory for them 
was that the shorter packets already gives a sufficiently clear physical picture. More 
groups are expected to split from a longer packet. Groups in the central part of the 
packet would evolve in ways similar to those in an infinitely long train of unstable 
waves, to be studied in $6, until end effects encroach toward the centre, which would 
lead to ultimate separation. 

6. Sideband instability with dissipation 
Numerical experiments by Yuen & Lake (1982), based on the discretized Zakharov 

integral equation and 7 modes (the carrier-wave mode v = 0, and the sidebands and 
their higher-harmonic modes f1 ,  f2, f3), and by Bryant (1982), using up to 29 
modes, have revealed the following. 

(i) If only the sideband modes v = f 1 are linearly unstable, the lower mode (+ 1) 
grows faster than the upper mode ( -  l ) ,  while the carrier wave diminishes. After a 
time the trends are reversed and continued by nearly recurring rises and falls. The 
greatest difference between modes + 1 and - 1 occurs when both attain their maxima. 
If the initial wave slope La, is large enough, max (A;) can exceed min (A;), thereby 
causing temporary frequency downshift. This agrees qualitatively with the obser- 
vations of Lake et al. (1977, figure 3) and Melville (1982, figure 4). The higher modes, 
which are linearly stable, follow passively the rises and falls of the modes f 1, except 
that max 2; < max 

(ii) If the initial wave slope is quite large (ha, > 0.2, but below the threshold of 
restabilization) so that two or more pairs of sidebands are linearly unstable, then 
recurrence ceases to exist. The more numerous the unstable sidebands, the more 
chaotic the subsequent evolution. Our numerical experiments for moderately high 
ka, and without dissipation confirm the findings of Yuen & Lake and Bryant and 
need not be reported here. 

Based on the simplified Dysthe equations, Janssen (1983) has considered the special 
case where the lowest sidebands are close to the threshold of instability. He finds that 
max2; < maxAI_, instead. This inequality remains valid even when the full 
equations are used, as pointed out by a referee for small time and confirmed 
numerically by us for small and large time. 

Laboratory experiments by Lake et al. (1977) and Melville (1982) were conducted 
in a relatively short tank and fairly large values of initial La, were used. The unstable 
sidebands grew so large a t  the first maxima that breaking was sometimes observed. 
Therefore events near the first sideband maximum and afterwards cannot be checked 
by available theories. In order to see what could happen to two-dimensional waves 
of moderate steepness (ka, < 0.15, for example) in a very long tank, we have 

t In the absence of viscosity the inequality max A^, < maxA^-, for all v except v = 1 could be 
inferred from the second invariant in equation 18) of Janssen (1983), for the simplified Dysthe 
equations. The invariant does not, however, hold for the full equations. 

v > 2 . i  
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examined the effect of dissipation, which may be important when very long time is 
considered. It is of course well known that, in addition to viscous dissipation, 
meniscus and surface aging or contamination can greatly affect the damping rate 
quantitatively and possibly qualitatively ; but the physics of all except the first is 
not well understood to be given a rigorous description. Hence we shall adopt the 
conventional parametric model by adding a linear term &A to the left of (2.1) as was 
done in numerical experiments by Chu & Mei ( 197 1 ) and analytically by Segur ( 198 1 ) . 
If viscosity in the wall boundary layers is the dominant source of dissipation, then, 
according to the linearized theory for deep water waves, 

( 6 . 1 ~ )  

where B is the tank width. In  the normalized equation (2.6) we add 8A, where 

Taking the following values typical in a laboratory tank, 

we find 

B = 1 m, v = 1 x ma/,, f = 2 Hz, 

4( 1 - i) x s= 9 

(6.lb) 

which means that damping can be appreciable'during the time range for which 
Dysthe's equations hold. Note, however, that, in the open ocean or a very wide tank, 
the viscous-damping factor is 

S = 2vk2, ( 6 . 3 ~ )  
whose dimensionless form is 

(6.3b) 

Even if v is taken to be 100 times the laminar viscosity, the factor is still only 
10-e/(ka,)2 for a wave of 10 s period. Thus damping, if important in nature, is caused 
by other effects. Furthermore, in wide tanks or real seas nonlinear evolution may be 
complicated by three-dimensional instabilities (see McLean et al. 1981 ; Melville 1982). 

In  the results to be presented, the initial disturbance consisted of a pair of sidebands 
v = f 1 but not their higher harmonics, 

A ( [ ,  0) = 1 +S(e'E+e-'f) eia, (6.4) 

where 8 and a are the initial amplitude and phase respectively of the sidebands. 
According to Dysthe's linearized criterion, the sidebands v = f 1 are unstable for 

(6.5) 
Ak 
k 
- = 2yk~ ,  < 2 d ( 2 )  ka, (1 - 2yku0)f. 

The maximum growth rate in time is 

Im Awl0 = +( 1 - 2ka,) (kuo)a, (6.6) 

which occurs at y = 1 -ikuo. The initial phase a is -in for maximum linear growth 
at small time (Benjamin & Feir 1967; Stiassnie & Kroszynski 1982). In  our 

14 PLY 150 
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FIGURE 13. Variation of spectral amplitudes u = 0, f 1 ,  f2 for modulated wave-train versus 
dimensionless 7 in moving coordinate. ka, = 0.15 and y = 0.775; (a )  inviscid result for A’;  ( b )  with 
dissipation for A ;  (c) with dissipation for A’. 

computations the initial amplitude S is fixed at 0.05. Owing to dissipation, the 
conservation law (3.17) is modified to 

(JIAlzd&) v =(JIAlzd&) 1-0 e d v .  (6.7) 

This relation is satisfied to a high degree of accuracy in all our computations. 
First we consider only one pair of sidebands, which are the most unstable 

(y = 0.755) according to (6.5). All high harmonics are linearly stable. The carrier wave 
has the initial kao = 0.15. For comparison, the inviscid results are presented in 
figure 13 (a). The Fourier components of A’(& 7 )  which include the carrier wave (v = 0) 
and its sidebands ( Y = & 1, f 2) are plotted against the normalized distance 7. With 
dissipation the Fourier components of A are shown in figure 13 (b), where 8 is given 
by (6.2), and the Fourier components of A’ in figure 13(c) .  As in the inviscid case, 
the upper (v = - 1 ) and lower ( v  = + 1 ) sidebands grow and decay in a quasi-recurring 
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FIQURE 14. As figure 13 except y = 0.5 and v = 0, & 1 

manner, with the lower sideband dominant at the first maxima. However, with 
dissipation, the cyclic pattern is shortened and recurrence is accompanied by 
attenuation. The maxima of the lower sideband of A continue to be greater than those 
of the upper sideband; this is not so for A' because the term aA/a( in (2.13) 
accentuates the upper sideband. 

The cases where two pairs of sidebands v = f 1, f 2 are linearly unstable according 
to (6.5) are presented in figures 14 and 15, where ku, = 0.15 and initial data (6.4). 
Here we take y = 0.5. For comparison, the inviscid results for A' are plotted in 
figures 14 (a)  and 15 (a) ; recurrence is obscured. With damping, the upper sideband of 
A, v = - 1, grows from its initial small value and then remains fairly flat throughout, 
figure 14(b). The lower sideband of A, v = 1, rises and falls with attenuation, 
alternates with the carrier, v = 0, and dominates over the upper sideband most of 
the time. The higher unstable sideband pair, v = +2, remains fairly passive 
throughout. As for the Fourier components of A' (figure 14c), the lower sideband, 
v = 1, is comparable to the upper sidebands, v = - 1. Computations by doubling the 

14-2 
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FIGURE 15. As figure 13 except y = 0.5 and v = 0, 2. 

damping give similar results. We have further examinedt the same initial state but 
with twice the total number of Fourier modes so that four sideband pairs are now 
unstable. The new modes have one-half and three-halves of the wavenumber of the 
pair that was assigned a non-zero initial value. These new modes can grow from 
minute numerical noise (with an assigned initial value of in our tests) and lead 
to a more chaotic state after a long time, if viscosity is ignored. However, with 
viscosity as modelled here, their unstable growth is virtually completely suppressed. 

New experiments for mild wave slopes (ha, < 0.15) over a long fetch (beyond the 
first maximum of the sidebands) are needed to check these computed results. 

7. Concluding remarks 
From the reasonable agreement between recent experiments and our computations, 

both for initially periodic groups and for wave packets, i t  appears that Dysthe's 
extension of the CSE is a useful basis for predicting the long-time evolution of 

t A t  the suggestion of a referee. 
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narrow-banded weakly nonlinear waves. From $6, viscous effects in a typical 
laboratory tank are seen to be significant within the time range ( k ~ ) ~ w t  = 0(1) to 
which Dysthe’s extension is limited. Because of this, viscosity would be dominant 
in a longer time range (ka)3 wt % 1, and further extension of Dysthe’s equations does 
not seem worthwhile, if ka and the bandwidth are sufficiently small. For either broad 
bandwidth or large ka, modulation is no longer slow. In the former case one can use 
Zakharov’s integral equation, while, in the latter, the exact numerical theory is 
needed. 

This research has been jointly sponsored by the Fluid Mechanics Programs of the 
U.S. National Science Foundation and the Office of Naval Research. We acknowledge 
fruitful discussions on the experimental aspects of this topic with Professor W. K. 
Melville and Dr N. Huang, and on numerical techniques with Professor S. A. Orszag. 
Special thanks are due to G. Keller whose unpublished experimental data 
prompted $4. 

R E F E R E N C E S  

BENJAMIN, T. B. & FEIR, J .  E. 1967 The disintegration of wave trains in deep water. Part 1.  

BRYANT, P. J. 1982 Modulation by swell of waves and wave groups on the ocean. J. Fluid Mech. 

CHERESKIN, T. K. 1982 The development of nonlinear surface and internal wave groups. Doctoral 

CHU, V. H. & MEI, C. C. 1970 On slowly varying Stokes waves. J. Fluid Mech. 41, 873-887. 
CHU, V. H.  & MEI, C. C. 1971 The nonlinear evolution of Stokes waves in deep water. J. Fluid 

Mech. 47, 337-351. 
COHEN, B. I.,  WATSON, K.  M. & WEST, B. J. 1976 Some properties of deep water solitons. Phys. 

Fluids 19, 345-354. 
CRAWFORD, D. R., LAKE, B. M., SAFFMAN, P. G. & YUEN, H. C. 1981 Stability of weakly nonlinear 

deep water waves in two and three dimensions. J. Fluid Mech. 105, 177-191. 
DYSTHE, K.  B. 1979 Note on a modification to the nonlinear Schrodinger equation for application 

to deep water waves. Proc. R. SOC. Lond. A 369, 105-114. 
FEIR, J. E. 1967 Discussion: some results from wave pulse experiments. Proc. R. Soc. Lo&. A 

FORNBERQ, B. & WHITHAM, G. B. 1978 A numerical and theoretical study of certain nonlinear 

JANSSEN, P. A. E. 1983 On a fourth-order envelope equation for deep-water waves. J. Fluid Mech. 

KELLER, G .  J. 1982 Experiments on nonlinear wave interaction (private communication). 
LAKE, B. M., YUEN, H. C., RUNQALDIER, H. & FERQUSON, W. E. 1977 Nonlinear deep water 

waves: theory and experiment. 2. Evolution of a continuous wave train. J. Fluid Mech. 83, 
49-74. 

LONQUET-HIQQINS, M. S. 1978 The instabilities of gravity waves of finite amplitude in deep water. 
11. Subharmonics. Proc. R. SOC. Lond. A 360, 48!%505. 

MCLEAN, J. W., MA, Y. C., MARTIN, D. U., SAFFMAN, P. G. & YUEN, H.  C. 1981 A new type of 
three dimensional instability of finite amplitude gravity waves. Phys. Rev. Lett. 46, 817-820. 

MELVILLE, W. K. 1982 The instability and breaking of deep-water waves. J. Fluid Mech. 115, 
1651 85. 

ROSKES, G. J. 1977 Fourth order envelope equation for nonlinear dispersive gravity waves. Phys. 
Fluids 20, 157&1577. 

SEQUR, H. 1981 Viscous decay of envelope solitons in water waves. Phys. Fluids 24, 2372-2374. 
STIASSNIE, M. 1984 Note on the modified Schrodinger equation for deep water waves. Wave Motion 

6. 431-433. 

Theory. J. Fluid Mech. 27, 417430. 

114, 443-446. 

thesis, Woods Hole/MIT Joint Program in Oceanography and Ocean Engineering. 

299, 54-58. 

wave phenomena. Phil. Trans. R. Soc. Lo&. A 289, 373404. 

126, 1-1 1 .  



416 E. Lo and C. C. Mei 

STIASSNIE, M. & KROSZYNSKI, U. I. 1982 Long-time evolution of an unstable water-wave train. 

Sn, M. Y. 1982 Evolution of groups of gravity waves with moderate to high steepness. Phys. Fluids 

TAPPERT, F. 1974 Numerical solutions of the Korteweg-de Vries equation and its generalizations 
by the split-step Fourier method. Lectures Appl. Maths 15, 215-216. 

WEST, B. J., WATSON, K. M. & THOMSON, A. J. 1974 Mode coupling description of ocean wave 
dynamics. Phys. Fluids 17, 1059-1067. 

YUEN, H. C. & FEROUSON, W. E. 1978 Relationship between Benjamin-Feir instability and 
recurrence in the nonlinear Schrijdinger equation. Phys. Fluids 21, 1275-1277. 

YUEN, H. C. & LAKE, B. M. 1982 Nonlinear dynamics of deep water gravity waves. Adv. Appl. 
Mech. 22,67-229. 

ZAKHAROV, V .  E. & SHABAT, A. B. 1972 Exact theory of two-dimensional shelf-focusing and 
one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 34, 62-69. 

J .  Fluid Mech. 116, 207-225. 

25, 2167-2174. 

Appendix. Computational data 

Case 

Number of 
mesh Doints 
in ZE [O ,  2x1 Time step 

kll a Comments 2N At Y 
Periodic group 64 0.0025 0.229 0.23 wT j, jb 
Short packets 256 0.01 0.0868 0.09 1On 124 134 

256 0.01 0.0868 0.09 20n 119 139 
256 0.01 0.0521 0.15 2Cht 119 139 

Wavetrain instability 64 0.0025 0.775 0.15 
with and without 64 0.0025 0.5 0.15 
dissipation 




